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e With the rise of personalized music streaming e Global Co-Occurrence Matrix: We constructed a co-occurrence matrix M e Quantitative Evaluation: We assessed the accuracy,
platforms like Spotify and Apple Music, song based on the presence of song pairs in playlists. precision, recall, and F1 score for each set of embeddings
recommendation systems have become e High Co-Occurrence Scaling: With precedent from GloVe, we included a used on a downstream classification task determining
integral to user experience. scaling term to reduce the weight of frequently co-occurring songs: whether labeled song pairs are similar or dissimilar.

e Current recommendation systems are often i) 4 ()\(z‘,j) )0‘ Model Accuracy Precision  Recall F1
computationally expensive, requiring complex Amax MuSE 6530%  71.79%  8235%  16.71%
models and extensive feature extraction for e Laplace Smoothing: We reduced the sparsity of the co-occurrence MuSE + Artist Augmentation 7222%  71.92%  82.19%  79.98%

. . . MuSE + Contrastive Learning 69.61% 74.07% 85.71% 79.47%
each individual song. matrix by incrementing co-occurrence values by 1. MuSE + Augmentation + Contrastive 74.55%  79.75%  84.00%  81.82%

e We introduce Musical Semantic Embeddings e Optimization: We used batch gradient descent to minimize the following Qualitative Evaluation: We used -SNE to reduce the
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e To aYO'd an excessively Sparse co-occurrence e These results show the effectiveness of the MuSE method, which oo 00
matrix, we sampled playlists containing at least recovers semantic embeddings without looking at audio features.
one of 10 songs that popular across playlists. e Future work should focus on helping MuSE generalize to unseen songs, " UsneDimension1 " UenNeDimension1

e We used a 80/10/10% split for train/val/test.

exploring methods like Supplementary neural networks. Artist: @ Kendrick Lamar @ Pitbull @ Lady Gaga @ Justin Bieber



