
Musical Semantic Embeddings (MuSE)
CS 229: Machine Learning

Eric Lee
Department of Computer Science

Stanford University
ericlee7@stanford.edu

Akshar Sarvesh
Department of Computer Science

Stanford University
asarvesh@stanford.edu

Abstract

Personalized music streaming services require computationally efficient and scal-
able recommendation systems, but traditional methods relying on audio feature
extraction often face scalability challenges. Thus, this paper presents Musical
Semantic Embeddings (MuSE), a novel approach inspired by NLP models like
GloVe, to generate song embeddings using only playlist data. By leveraging a
global co-occurrence matrix of songs, MuSE captures semantic relationships with-
out requiring audio analysis. Enhancements such as Laplace smoothing, artist
playlist augmentation, and contrastive learning improve embedding robustness and
quality. Experiments highlight MuSE’s effectiveness, achieving strong classifica-
tion metrics and consistent embedding clusters. This approach offers a scalable
and accurate solution for modern music recommendation systems.

1 Introduction

With the rise of personalized music streaming platforms like Spotify and Apple Music, song recom-
mendation systems have become integral to user experience, driving engagement and user satisfaction.
However, current recommendation systems are often computationally expensive, requiring complex
models and extensive feature extraction for each individual song. In this paper, we introduce Musical
Semantic Embeddings (MuSE), a novel approach inspired by NLP models such as GloVe, to generate
embeddings for songs using playlist data alone. Given a set of playlists, our method generates a
unique embedding for each song, such that similar songs are close in the embedding space. We
propose that these embeddings can be effectively utilized for downstream tasks central to music
platforms, such as song recommendation and user profile evaluation.

2 Related Work

Song recommendation systems have traditionally relied on computationally intensive models that
extract high-dimensional features from audio data using techniques like recurrent [Sun, 2022] and
convolutional neural networks [Yang, 2022]. While effective, these methods are resource-intensive
and challenging to scale across the enormous catalogs of today’s music streaming platforms.

Inspired by natural language processing (NLP), our approach simplifies embedding generation by
leveraging playlist data alone, similar to how NLP techniques create embeddings for words in text.
This lightweight method uses co-occurrence patterns of songs in playlists to produce embeddings
that can power downstream tasks without requiring feature extraction from audio content. Initially,
we explored Word2Vec [Mikolov et al., 2013], which embeds songs based on their neighbors within
playlists. Applying Word2Vec’s continuous bag-of-words model has been seen in prior work, such
as Song2Vec [Tong, 2018], attempting to capture semantic relationships between adjacent songs.
However, Word2Vec’s reliance on localized context limits its effectiveness for playlists, where song
order is often arbitrary due to features like "Shuffle."

Stanford CS 229 - Machine Learning

To overcome these limitations, we propose a GloVe-based approach [Pennington et al., 2014], which
uses a global co-occurrence matrix to more appropriately encode relationships between songs. Unlike
Word2Vec, GloVe emphasizes overall membership in playlists rather than localized context, making
it more suited for large-scale music recommendation. Additionally, we explored techniques such as
data augmentation and contrastive learning [Khosla et al., 2021] to improve embedding robustness
and capture additional information from our song-playlist membership data.

3 Dataset and Features

We sampled 527 playlists containing 21747 unique songs from a Spotify Playlists dataset [Shkurenko,
2022] found on Kaggle. The dataset includes information about playlist names, song names, song
artists, and maps each playlist to the list of songs it contains. To avoid an excessively sparse co-
occurrence matrix, we sampled the 527 playlists containing at least one of 10 songs that were found
across many playlists. Given the straightforward nature of this membership data, we performed no
additional pre-processing. For fast querying, we stored the data in a MySQL database.

We split our data into training, validation, and test sets across playlists distributed as 80%-10%-
10%, respectively. This practice allows us to evaluate generalizability on the test set while tuning
hyperparameters on the validation set, such as our learning rate, scaling term α, number of epochs,
and embedding dimension size.

4 Method

To generate robust embeddings, we implemented the following machine learning techniques:

1. Global Co-Occurrence Matrix: We constructed a co-occurrence matrix M based on
the presence of songs in playlists. Specifically, if songs i and j appeared in λ playlists
together, they would have a co-occurrence score M(i,j) = λ. Note that for S unique songs,
M ∈ RS×S . From this matrix, we computed the weighted least squares objective and
optimized to create initial embeddings.

2. High Co-occurrence Scaling: With precedent taken from the GloVe [Pennington et al.,
2014], we included a scaling term (α < 1) to reduce the high weight of extremely high
co-occurrence values for balance across other pairs. Namely, for co-occurrence P(i,j):

λ(i,j) ←
(λ(i,j)

λmax

)α

Unlike GloVe, we did not treat songs as "context" or "main" songs because in this application
regarding playlists, the order of songs is not critically important.

3. Laplace Smoothing: We found better results by implementing Laplace smoothing, which
involves incrementing all co-occurrence values by 1:

M(i,j) ←M(i,j) + 1,∀i, j ∈ [S]

This helps reduce the sparsity of our co-occurrence matrix, and helps reduce over-fitting
of the most frequent co-occurrences by placing a small amount of importance even on rare
song pairs.

4. Optimization and Gradient Descent: We used gradient descent to minimize the following
objective by taking its gradient:

J =

n∑
i,j

(M(i,j)

Mmax

)α

(wT
i wj + bi + bj + logM(i,j))

2

Here, wi is the embedding of song i, bi is the bias of song i, and α is as defined above.
J is optimized with batch gradient descent, with stopping upon convergence (< 10−5) or
maximum iterations (specified as hyperparameter).

5. Artist Playlist Augmentation: To account for the musical similarity of songs by the
same artist, we augmented our dataset with playlists consisting exclusively of songs from

2

individual artists. After creating one such playlist for each artist, we add these augmented
playlists to the training set such that the co-occurrence matrix will reflect the relationships
between these songs more clearly. Namely, M follows:(

M(i,j) ←M(i,j) + 1
)

if Artist(i) = Artist(j) and i ̸= j,∀i, j

6. Constrastive Learning from NLP: To enhance performance on downstream classification
tasks (e.g., song similarity), we incorporated contrastive learning to refine our embeddings
[Khosla et al., 2021]. To maintain a lightweight approach using only accessible playlist
data, we introduced a novel method leveraging LLM-generated embeddings of playlist
titles to construct positive and negative song pairs. Specifically, we created an embedding
representation for each playlist by tokenizing its title and averaging BERT embeddings
[Devlin et al., 2019] across tokens. Then, positive song pairs were sampled from playlists
with the highest cosine similarity between their embeddings, while negative song pairs were
drawn from playlists whose embeddings had the lowest similarity.
We then optimized loss function J , where wi, wj are MuSE embeddings for songs i, j,
y ∈ {−1, 1} is the label denoting a positive (1) or negative (−1) example, and margin m is
a hyperparameter enforcing a lower bound on the distance between negative pairs:

J =
∑

{(wi,wj ,y)}

y ·
(
1− wT

i wj

||wi||2 · ||wj ||2

)
+ (1− y) ·max

(
0,

wT
i wj

||wi||2 · ||wj ||2
−m

)
Intuitively, optimizing J pushes the embeddings of positive examples towards each other
and pushes negative examples away from each other, maintaining a margin of at least m.

5 Experiments

To evaluate these song embeddings at the end of training, we opted to implement both quantitative
evaluation of the model’s ability to classify song similarity and qualitative evaluation of proximity in
the embedding space.

• Quantitative Evaluation: We assessed model performance in classifying whether labeled
song pairs are similar or dissimilar across 4 metrics: accuracy, precision, recall, and F1
score. Noting that MuSE is likely to be used for recommendation systems, our priority
was to maximize precision and F1 score. We generated these labeled song pairs from our
validation and test sets. In particular, positive examples were generated by sampling pairs in
the same playlist and negative examples were created by sampling songs not co-occurring in
any playlist. Labels were predicted by simply taking the cosine similarity between learned
song embeddings. We considered song pairs with absolute value cosine similarity > 0.05 as
a minimum threshold for a meaningful recommendation.

• Quantitative Evaluation: To evaluate whether the embeddings for similar songs led to
appropriate clusters, we used t-SNE to reduce the embeddings to two dimensions and plotted
sample songs from well-known artists. This allowed us to visually assess whether songs
that are known to be similar (ex. Applause and Paparazzi by Lady Gaga) have embeddings
which are close in N-dimensional space. We chose t-SNE over PCA due to its better ability
to deal with high dimensional data like we have in our MuSE embeddings.

We began by training a basic MuSE model to generate baseline embeddings (Method 4.2). Then,
for hyperparameter tuning, we experimented with the scaling constant α ∈ {0.6, 0.75, 0.9}. Our
findings were consistent with the initial GloVe experiments [Pennington et al., 2014], where α = 0.75
yielded the best results in striking a balance between reducing over-fitting on high frequency pairs
and minimizing noise from infrequent pairs.

Then, we conducted grid search with α = 0.75 to determine our remaining hyperparameters.
Specifically, we evaluated 12 combinations between the number of epochs N ∈ {50, 100, 150, 200}
and learning rate η ∈ {0.025, 0.05, 0.1}. After evaluation on the validation set, we found the highest
F1 score on the hyperparameters N = 150 and η = 0.05. To train our model, we performed batch
conventional gradient descent, with an early stopping convergence threshold of 10−5.

3

Table 1: Classification metrics for experiments with different dimensions on validation set.

Embedding Dimension Accuracy Precision Recall F1

25 48.54% 52.75% 51.61% 52.17%
75 53.30% 57.45% 63.53% 60.34%

150 51.13% 53.42% 55.71% 54.55%
250 60.15% 68.82% 72.73% 70.72%
500 63.21% 75.32% 74.36% 74.83%

We separately determined the hyperparameter of embedding length, due to its importance in deter-
mining the information captured within the embeddings. As seen in Table 1, we found that in general,
the model with embedding dimension 500 showed the best performance across all metrics. Further,
performance generally seemed to improve as the embedding dimension increase. This likely occurs
because the longer embeddings are able to more deeply capture the complex relationships between
songs, though at the risk of over-fitting with the additional parameters.

We also discovered for all models that the inclusion of Laplace smoothing uniformly improved
performance across all metrics. This improvement can be attributed to the reduction of noise from
extremely rare song pairs, whose song embeddings capture little information without smoothing.

6 Results and Discussion

After tuning hyperparameters, we trained models for each combination of implementing artist playlist
augmentation (Method 4.5) and contrastive learning from NLP (Method 4.6). Then, to assess the
impact of these additions, we evaluated each finalized model on the test set (Table 2).

Table 2: Classification metrics for final models on test set with dimension 500.

Model Accuracy Precision Recall F1

MuSE 65.30% 71.79% 82.35% 76.71%
MuSE + Artist Augmentation 72.22% 77.92% 82.19% 79.98%
MuSE + Contrastive Learning 69.61% 74.07% 85.71% 79.47%

MuSE + Augmentation + Contrastive 74.55% 79.75% 84.00% 81.82%

Based on these metrics, we observe that including both playlist augmentation and contrastive learning
results in the best trained embeddings. Adding playlist augmentation to the model leads to improve-
ments in accuracy and precision with a slight drop in recall, as embeddings distinguish between
different artists more clearly and err on the side of classifying false negatives. Meanwhile, adding
contrastive learning leads to measured improvements across all metrics, implying success in pulling
similar embeddings closer while driving dissimilar embeddings apart. The final model with both of
these features seems to combine the benefits of both individual additions, with high performance
across all metrics by the most significant margin.

As seen in Figure 1, the qualitative results also support the conclusion that using both contrastive
learning and playlist augmentation generates the best performing model with regard to the embedding
space. Augmentation seems to create more well-defined clusters at the expense of distance, as seen
by the grouping of colors being in similar regions but being somewhat further apart. Meanwhile,
contrastive learning clearly pulls similar embeddings closer together, to an extent determined by
margin m. In the final combined model, we see the best of both features where clusters are both
well-defined and relatively tight.

Moreover, beyond groupings by artists, note that the embeddings for the combined model (bottom
right) encapsulate distinctions in audio features and genre despite not having trained on such infor-
mation. Specifically, rap/hip-hop songs are in the top left, and dance music aggregates toward the
bottom left. Pop music clusters on the right side of the plot, with more energetic pop music near the
bottom and increasingly sad / relaxed songs near the top of the plot.

4

Figure 1: Two dimensional visualizations of similar songs in embedding space (reduced by t-SNE)
for each model with embedding length 500.

7 Conclusion

In this paper, we introduced Musical Semantic Embeddings (MuSE), a novel machine learning
technique designed to efficiently generate meaningful song embeddings using playlist data alone. By
leveraging a global co-occurrence matrix to map songs into an embedding space, MuSE eliminates the
need for feature extraction from audio data. Our findings demonstrate that MuSE effectively groups
similar songs in the embedding space, with techniques like playlist augmentation and contrastive
learning. These advancements highlight MuSE’s potential as a computationally efficient solution
for recommendation tasks, enabling platforms like Spotify and Apple Music to continuously refine
embeddings with minimal overhead. The ability to train embeddings using only playlist metadata
represents a significant step toward faster, scalable music recommendation systems.

Despite its advantages, we note that MuSE faces limitations in generalizing to unseen songs, par-
ticularly those with limited playlist representation. While playlist augmentation helps mitigate this
challenge, future research could explore complementary strategies to address this limitation. Leverag-
ing NLP techniques to analyze song titles or training a neural network atop the existing embeddings
to predict unseen embeddings are promising directions. Such extensions would broaden MuSE’s
applicability to a wider range of songs, including less popular and newly released tracks.

5

8 Contributions

• Eric and Akshar worked together to ideate, read papers, and conduct background research to
formulate the project methodology.

• Eric processed the dataset, splitting it to generate training, validation, and test sets.
• Akshar implemented the fundamental training framework with gradient descent.
• Akshar and Eric jointly worked on training models in parallel, and Eric led hyper-parameter

tuning with grid search.
• Eric implemented the artist playlist augmentation feature to modify the co-occurrence

matrix.
• Akshar implemented contrastive learning with the generation of positive/negative pairs and

additional training with contrastive loss function.
• Eric implemented the evaluation framework with qualitative evaluation with clustering and

quantitative evaluation on labeled positive and negative song pairs.
• Akshar led in-depth results analysis and error analysis after training to evaluate model

performance.

References
Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-training of deep

bidirectional transformers for language understanding. 2019. URL https://arxiv.org/abs/
1810.04805.

Prannay Khosla, Piotr Teterwak, Chen Wang, Aaron Sarna, Yonglong Tian, Phillip Isola, Aaron
Maschinot, Ce Liu, and Dilip Krishnan. Supervised contrastive learning. 2021. URL https:
//arxiv.org/abs/2004.11362.

Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey Dean. Efficient estimation of word representa-
tions in vector space. 2013. URL https://arxiv.org/abs/1301.3781.

Jeffrey Pennington, Richard Socher, and Christopher D. Manning. Glove: Global vectors for
word representation. Stanford Computer Science, 2014. URL https://aclanthology.org/
D14-1162/.

Viktoriia Shkurenko. 6k spotify playlists. Kaggle, 2022. URL https://www.kaggle.
com/datasets/viktoriiashkurenko/278k-spotify-songs/data?select=final_
playlists.csv.

Pengfei Sun. Music individualization recommendation system based on big data analysis. Com-
putational Intelligence and Neuroscience, 1, 2022. URL https://pmc.ncbi.nlm.nih.gov/
articles/PMC9276508/.

Weiqi Tong. From word2vec to song2vec: An embedding experimentation with context learn-
ing of dense vectors. Medium, Weiqi Tong, 2018. URL medium.com/@weiqi_tong/
from-word2vec-to-song2vec-an-embedding-experimentation-9215279c9d7a.

Jingzhou Yang. Personalized song recommendation system based on vocal characteristics. Mathe-
matical Problems in Engineering, 2022. URL https://doi.org/10.1155/2022/3605728.

6

https://arxiv.org/abs/1810.04805
https://arxiv.org/abs/1810.04805
https://arxiv.org/abs/2004.11362
https://arxiv.org/abs/2004.11362
https://arxiv.org/abs/1301.3781
https://aclanthology.org/D14-1162/
https://aclanthology.org/D14-1162/
https://www.kaggle.com/datasets/viktoriiashkurenko/278k-spotify-songs/data?select=final_playlists.csv
https://www.kaggle.com/datasets/viktoriiashkurenko/278k-spotify-songs/data?select=final_playlists.csv
https://www.kaggle.com/datasets/viktoriiashkurenko/278k-spotify-songs/data?select=final_playlists.csv
https://pmc.ncbi.nlm.nih.gov/articles/PMC9276508/
https://pmc.ncbi.nlm.nih.gov/articles/PMC9276508/
medium.com/@weiqi_tong/from-word2vec- to-song2vec-an-embedding-experimentation-9215279c9d7a
medium.com/@weiqi_tong/from-word2vec- to-song2vec-an-embedding-experimentation-9215279c9d7a
https://doi.org/10.1155/2022/3605728

	Introduction
	Related Work
	Dataset and Features
	Method
	Experiments
	Results and Discussion
	Conclusion
	Contributions

